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CHAPTER I

INTRODUCTION

The work of Adamjan-Arov on scattering [2], and their subsequent

investigations of Hankel operators and various approximation, inter-

polation, and extension problems connected with them [1], [3] - [7],

has by and large not been used for the study of stationary discrete time

stochastic processes (stationary sequences). Our work is a study of

the ramifications of their work in the context of stationary sequences.

For deterministic linear systems, their work on Hankel norm approximations

has recently received considerable attention. In our view, this is

due to the fact that the input-output approach gives the Hankel norm

approximation a physically appealing interpretation (see Chapter 8).

For stationary sequences, however, the probabilistic information is

available in the form of the spectral density f of the p-dimensional
yy

sequence {y(n)jW (or equivalently the covariance function) and there

is no obvious candidate which plays the role of an input-output map.

This is now well known, for example, in the context of stochastic

realization theory (cf. also the work of Willems [42]). Looking for an

object which plays the role of an input-output map has some conceptual,

as well as practical, ramifications. Conceptually, it presents us with

a unified approach to deterministic and stochastic realization theory.

On a more practical level, it provides us with some justification as to

'what' should be approximated when dealing with the model reduction

problem.

....

. . . . . . . . ..i. . . . . . . . . . . . . . . .
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In this study, we associate with every centered regular full rank

stationary process y a scattering matrix S which measures the interaction

between the past and future of the process. It may be considered to be

a mapping which maps the backward innovations of the process to the

forward innovations of the process (see Chapter 3). In the 1-dimensional

case, this scattering function is essentially the phase function of the

outer factor of the density (and hence can be considered as the phase

function associated with the density).

The question as to when the phase function (for a 1-dimensional

process) determines the density of the process (up to a positive scalar

multiple) was investigated by Levinson-McKean [28]. They proved that

this is true iff (if and only if) the process has the completely non-

deterministic property, namely, no value in its (strict) future space

(that is, the space spanned by the values y(1), y(2), . .) can be

linearly predicted without error based on its past space (that is, the

space spanned by y(O), y(-l), ). This property is stronger than

regularity in which no future value of the process can be linearly predicted

without error based on its past space [9]. For the vector case, not only

does the approach in [28] not generalize, but, in addition, it is not

clear what is the right notion of a phase (matrix valued) function to

associate with a density. That our scattering matrix S can be viewed as

the right generalization can be supported by the fact that S determines

the density up to congruency (that is, up to the form K*f()K) iff the
yy

process is completely non-deterministic (Theorems 4.5, 4.8). Those

scattering matrices which correspond to regular full rank completely

non-deterministic processes are characterized in Theorem 4.13.

In deterministic systems realization theory, for a causal frequency

,[ : :. : i: .,.::.: -: :.: . :::.:: i:: K: -:::::,:: ,% :, : : ;.-:
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response function ¢ we have the general principle [23, p. 24] that the

Hankel operator H (the composition of the reachability and observability

maps) determines (the causal) p up to an additive constant. Assuming

p(0) = [0] , the general principle can be rephrased by saying that

HA admits a unique causal lifting to the Laurent operator L (input-output

map). In the case of stationary sequences the Hankel operator HS

admits a unique norm preserving lifting LS (Theorem 4.4). This

property can be given a variational characterization, namely, S is the
++

unique solution to

min{I!Fljj : FEL.(B(CP)), ck(F) = ck(S) , k =-1, -2, ... }

where ck(F) is the k-th Fourier coefficient of F.

That the scattering matrix can be viewed as an analog to the

frequency response function in systems is further strengthened by the

role we show it plays in Markovian representations (realizations) of

stationary sequences. A subspace X in the span H of y is a Markovian

representation for the sequence {y(n)1_ if the process L j

(U being the shift on H ) has the (weak) Markov property (Definition

6.1), and yl(0), , yp(0) are contained in X. The dynamical

representations are thereby readily obtained (Sections 6,7).

Ruckebusch [37], Lindquist-Picci [23] develop a realization theory

for stationary sequences in which every Markovian representation is in

+ In the terminology of [4], S is the unique minifunction for H

Each such F can be viewed as an extension of HS [4]. The
parametrization of all those extensions seems to be strongly related to
the covariance extension problem.

,. . .. ..-.-- .-.. ... . .... . . . . . . .. ..... . ... . . . . - .. .
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1-1 correspondence with a factorization of the spectral density.

In our view, having the spectral density as the only probabilistic

information available to us implies that two stationary sequences in H Y

having the same density (a.e.) are indistinguishable (equivalent). Thus,

two geometrically (and probabilistically) different Markov processes in

H inducing identical dynamical representations (see Theorems 6.12, 7.1)y
should be considered equivalent. This equivalence relation between

Markov processes is available to us via the characteristic function of

Nagy-Foia§ associated with a (completely non-unitary) contraction or its

corresponding (completely non-unitary) semigroup of contractions [30].

Indeed, we demonstrate that for a subspace XCH the (full range,

regular) process {Unx 1V is (weakly) Markov iff the state transition
-00

operator A, which is the compression of U to X, has U as its minimal

unitary power dilation in H (Proposition 6.2), and, moreover, A is of

class Co0  (Corollary 6.5). Thus {A n , is a C00 semigroup of

contractions. The equivalence relation between Markov processes will

be based upon this Markov semigroup. In view of the dual relationship

between the Lax-Phillips scattering operator model and dilation theory

[2], there is set up a 1-1 correspondence between a Markov process

{uInX}-0 0 and a Lax-Phillips scattering system (Theorem 6.4). According

to a fundamental result of Nagy-Foiaq [30, Th. VI.2.5] the characteristic

function of a C contraction induces a model space (the functional00
model), and under the so-called (Nagy-Foia§) incoming spectral

representation, the action of this contraction on the model space is the

restricted shift (the model operator). Thus, two contractions having

+ n *
i.e., A -0 A - 0 strongly.

°S.: • . ~~~................... ....... ......-. "".-...................... ....-... %
• .-. ." ."- " .' •. " .. -" . .,° .. ." .. -" -. -" . -" _"- " ." -. ." -. ' " ." ". ..'-.."" ." ". ". . - . '.; ..-. '.-.. .- ..- .' .' .-.-. " ",,.,-
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+

coinciding characteristic functions are unitarily equivalent, and so

are their corresponding semigroups. Noting (as was established in [2])

that the characteristic function of A coincides with the scattering matrix
++ n

ox 0 X of the aforementioned scattering system induced by {U X}_C, we

establish in this way an equivalence relation between Markov processes

(thus abandoning the 1-1 correspondence with their scattering systems)

which is based upon the coincidence of their scattering matrices

(characteristic functions), that is, the unitary equivalence between their

corresponding Markov semigroups. This enabled us to demonstrate that

two stationary sequences are equivalent iff they possess identical

dynamical representations induced by equivalent Markov processes which

represent them (Theorems 6.12, 7.1). We next show (Theorem 6.10)

that there exists a 1-1 correspondence between the equivalent classes of

(full range, regular) Markov processes and the purely contractive

analytic functions TeH(B(CP)) which are inner. Among those inner

functions we wish to choose those and only those which are (via the

above correspondence) a representation for the stationary sequence

{y(n) I co or a sequence equivalent to it. This is accomplished in Theorem

7.2. Thus, the desired family of inner functions are those and only

those C, which factor the scattering matrix S: S = C1 '2 ' O2e I(B(CP)"

The left coprime factorization S = QIQ 2 induces the minimal equivalent

class (Theorem 7.3). This is in direct agreement with deterministic

systems realization.

+ Definition 6. 8.

This function coincides with the structural function of Lindquist-
Picci (29].

A corresponding result holds for the right factorizations.
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41- Having associated an inner function 0 to each Markov process

{ Xnx_, there is a natural degree associated with it, namely, d(0) =

+

det 0. +Accordingly we obtain d(Q) I~ d (E) that is, the minimal
class is of the weakest degree. Our approach enables us (by inspection)

to derive the fact that a Markovian representation is minimal iff it is

observable and constructible, and exact observability and constructibility

hold iff range HS is closed.

The scattering approach was found to be useful in various prediction

and interpolation problems of stationary processes. This was demonstrated

by Adamjan-Arov in [3]. They consider a general situation in which

for two jointly stationary 1-dimensional processes C, r) we are given

the past H (0) of n,and the future H+(m) (m > 0) of , and we wish to

linearly predict n(k), k > 0 based on H,(0)VH (m). This general set-up

is applicable to prediction, interpolation, and filtering. By posing the

problem in terms of incoming and outgoing data, the corresponding

scattering matrix can be computed and the predictor expressed in terms

of this scattering matrix. Thus, generally speaking, this approach

transforms the projections in the space of values of the processes into

the corresponding ones in L2 in which a solution can be obtained.

Another area in which the scattering matrix appears to have

considerable appeal is in model reduction. As the only accessible data

is the spectral density f we would ultimately be concerned with

obtaining rational approximations to this density. We formulate (Chapter

8) two problems in model reduction both of which involve the Hankel

operator HS. In Problem A we wish to approximate the p-dimensional

+ Its scalar multiple in the terminology of [301.

As they point out, their approach generalizes to the vector case.

.................................... '..
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process y with a p-dimensional process 9 of reduced order m, in such

a way that the 'distance' between them

= sup{llyj(n) - yj(n) iIH : j = 1, ... , p, neZ}

y

is minimized. The motivation for Problem A stems from the fact that for

the covariances {C C of, y_ we then obtain
n _C0 n Cof

rp 21
IC - Cf n 1 2~/ [E: VJ E

j=1 yjyj

We give a solution (generally non-unique) to the above problem (Theorem

8.2) which, however, can not be obtained in a constructive fashion.

This problem leads naturally to a weaker version of finding an inner

function QIHI(B(CP)) of degree d(Q) -S m such that ilHQs, = min.

(Problem B). This is a Hankel approximation problem in disguise. For

the p = 1 dimensional case we obtain a constructive solution in the

following fashion: We consider the rank m Hankel approximant H +

to H . The desired function q is obtained by
S

H2 G) qH2 = range

and is constructed from the Schmidt pairs corresponding to the m-th

singular value sm(HS). On the Markov subspace corresponding to q

we project y(O) and thereby obtain a process 9 whose density f^^ is

of degree at most m, and for its moments we obtain the bound

(Proposition 8.5)

+ The vector case can not be treated in generality since H m is

in general not necessarily strictly non-cyclic.

° ~~~. .. ................-... °.o . ... .. ° . ,. . - .. o•° . % ,N, . .
4

4N a ° ,
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: 2Sm(H s) , n - 0, t1,
0

In closing we mention that various properties of stationary processes

were found to be reflected in HS (or S), such as the strong mixing

property, complete non-determinism, and strict non-cyclicity.
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CHAPTER TWO

NOTATION

Z stands for the set of integers, 6(n) for the indicator function of

{OICZ, C the complex numbers, and for aeC a denotes the complex conjugate

of a. For a matrix A = (aij )P we denote by A* the Hermitian conjugate

*i ,j=1
of A : = (b b..= Ai.., and by A' its transposition. For a family

13 i,j=j 13 J
of subsets {M.} of a Hilbert space H, we denote by VM. the smallest closed

Ji j 3
linear manifold (subspace) that includes each Mj, and by P.M. the greatest

j 3

subspace contained in each of them (their intersection). Mj denotes the

closure of Nj. in H. For subspaces M,N of H, MO)N denotes the

orthogonal complement of N in M. For a countable family M.} of mutually

orthogonal subspaces : Mi . M. i # j , we let Z0 M. be their orthogonal

sum. PMN stands for the orthogonal projection of H onto the subspace M.
For a bounded linear operator A : H1 - H2 of Hilbert space HI into h 2 ,

we denote by [A] the matrix of A with respect to specified orthonormal

bases in HH AIM stands for the restriction of A to the subspace
1'2

McH 1. B(H1 ,H 2 ) denotes the Banach space of all bounded linear operator

from H1 into H2 with B(H) = B(H,H).

By I2(-% ®; N) we denote the usual Hilbert space of sequences {h.}0

with values in (the Hilbert space) N for whichylh ' 12 < i* 3

i N
12(0,-; N), 12(-%1; N) are seen naturally as subspaces of 12(- , ; N).

L2 ,L will denote respectively the Lebesgue spaces on the circle

T= :e Xe[-ntl]} (with respect to the normalized Legesque measure

* . 5' * * S **~ . . . . .. ... **..



15

dX,
T-) of square integrable, essentially bounded complex valued functions.

Each function can be viewed as defined as [-TT, T ]. Similarly for the

spaces L 2 (CP), L o(Cp ) of functions f taking values in Cp for which

I[f()lIceLp , llf()U eL respectively. Lj(B(CP)) is defined

analogously for weakly measurable, B(C p ) valued functions f for which

ess. sup{ilf(e 1) X,[-, 7T]}< .

B(CP)

H are the subspaces of L2 defined by

Tr

S{ 1 ff(ei'X)e - in 'x d 0, n= 1, 2,
7T

H- = fiL2  f If e)einX dA 0, n= 0, 1, 2,..

and we have the orthogonal decomposition L 2 = H2 ( H2 . Each feH

having a Fourier series

fLe)X ~ aneinA'

f(e a e n

0

generates the function

00

g(z) = anzn

0

belonging to the Hardy class H of functions g(z) holomorphic in z j< 12

and such that

IT

sup [ ,g(re")2dx < O
2 0<r<l 7T -

- . ... . .' .-.. " - ' " ... . -.. . .-. .. ". ". . ." . .... .... ." ...... . .. . .... . -. . ..." . ..-". ......-.-i..,-..-.. .-...-.- ..
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ixMoreover, the (a.e. existing) radial limit g(e i ') of g(z) equals f(e i )

a.e. and HfIIL2 = 1gIH2. The function g(z) is seen as the analytic

extension of f*H + to the unit disc I zI< 1 and is denoted by f(z). We
2

+
identify H2 with H2 and denote them commonly by H2. Using the

conjugation with respect to the unit circle (z ), by the reflection

ix 7
principle, for feH 2 cL 2 the function f defined by f(e i ) ; f(e ) has an

1
analytic extension to I z > : f(), which we again denote by f. The

space f,2 = {feL2 : feH2 } is the space of functions fcL 2 having an analytic

extension to the exterior of the disc f(z) and we have

iT

= sup [.-L flf(pex)1  dX]2 P >I 7T

fEH 2 are called conjugate analytic.

Analogously for the Banach space L we have the subspaces H = H+CL

of functions fcL. having an analytic extension f(z) to I z < 1 with

- sup jf(z) I = f IIH

Similarly, for the Hilbert space L 2 (cP) we have the subspaces H2

H2 (c), H2 (Cp ) with the orthogonal decomposition L 2 (cP) = H 2 (cP) ®

H 2(cP). In L(B(cP)), again H (B(CP)) is defined as the subspace of

functions in L (B(cP)) whose negatively indexed (matrix valued) Fourier

coefficients vanish. For OcH.(B(CP)) the function 0* defined by

)0*(ei ) = [0(e )] is identified with its analytic extension 0*()=

to Izl > 1.
z

II

• -' . .2;i'-. .'.'-i.: . .- .' .'i . .-. .'...-..'...-. .'. " "."- . .".,. . - -. .. . .. . . . . .. . . . . . ..-. '-. -to-" " .. " .
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A function feH,, is called inner if If(elX)1 1 a.e. Similarly for
ixn

EeH=,(B(CP)) if 0(e ) is unitary a.e.. feH 2 is called outer if Vfxnf =

H2 where X denotes the function on T defined by X(ei ) = e For
OeL4B(CP)) the Toeplitz operator TO : H (CP) - H2 (CP) whose matrix is

2(2

block Toeplitz with respect to the standard basis {e el,e "e2 ... ,e ekk0

{el,e 2 ... e ,e} being the standard basis in Cp , is defined by Tel =

T+(Of) where T+ is the Riesz projection of L2 (CP) onto H2 (CP). H will

denote the Hankel operator [with block Hankel matrix with respect to the

standard bases in H (CP), H2(CP)] H H2(CP) - H2(CP) defined by2 2 ~ *2 ' 2( efndb

H f = T-(f), Tr being the Riesz projection of L2 (CP) onto H2 (CP). The
convention we employ regarding a Hankel operator as acting from H2 (CP)

into H2 (C p ) is not in accordance with the one employed in systems theory,

22.-.. in which we act on H2(cP) into H2(CP) : H f = 7T+(Of). It, however,

conforms with the one employed by Adarnjan-Arov-Krein and enables us

* to use their results without modifications, as well as to refer to them.

........................... . . . . ..
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CHAPTER THREE

THE SCATTERING OPERATOR MODEL AND THE SCATTERING

MATRIX ASSOCIATED WITH A STATIONARY STOCHASTIC PROCESS

Let H be a complex separable Hilbert space and let U be a unitary

operator on H. A subspace D+ is said to be outgoing for (U,H) if it

satisfies

(i) UD +C D+

(3.1) (ii) UnD+ = {0}
+ -0

cc n
-'..(iii) VU D+ = H

A subspace D_ for which

(i) U D_c D
on

(3.1 _ (ii) i,,U D_ = I
-00

con

(iii) VUnD =H

is said to be incoming for (U,H).

3.1 Definition. A quadruple (U,H,D,,D_) satisfying (3.1) is said to

be a scattering system.

We shall be interested in a scattering system arising in the following way.

Let (fL,P) be a fixed probability space and let

/Yl(n) ,

{y(n) neZ} y(n) = (Y 2 (n)

(yp(n)/

. . ... . . .

. . . . . . . . . . ... . . .

. . . . . . . .... . . . . .... .
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be a centered stationary process with yj (n~ 0,4P j 1, .. ,p.

Let f U) M (fk*(X))P X~e-iTj be its spectral density satisfying
k,j=1

7T

i.e. , the process is regular and of maximal rank.

Let

H H = V {y 1(n) , y 2 (n), , y (n c2'2(,1P
Y neZ 1

be the space spanned by the process and let U be the unitary shift

operator on H associated with the y process [36, p. 14]:

Uy.(n) y.(n+1) j =1,... , p, neZ

We consider the past and future of {y(n)}0- defined by

D = H (0) = Vjy(k),.. ., y (k)} D, H + (0) =Viy(k),. . ., y (k)}
y k5 0 py kA

By (3.1) it follows [36, Th. 11.6.1]

co n jo 0n
AU D_ { AU D

We readily obtain that (U,H ,D +,D_) is a scattering system.

3.2 Theorem (Translation Representation Theorem [27, Th. 11.1.1]).

Let (U,H ,D ~)be outgoing. Then there exists a H-ilbert space N., and a

unitary map r+ of H onto I2(-o, oo; N) such that

................. + 2:.*****~ *** +..
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(i) r+[D +] = 12(0,-o;N+)
(3.3)

(ii) U+ = r+Ur+

is the right shift operator on 12 (--o,;N+). This representation is unique

up to automorphisms of N+

Proof (cf. [2, p. 77]). By (3.1)+-ii the operator U JD+ is an isometry

having no unitary part. By Wold's decomposition theorem [30, Th.I.l.1]

we may write uniquely

CO

(3.4) D+ = D UnN+ N+ = D+() UD+
n=O

Since for any m > 0

U-mD U-m [(De UmD+) () u ] m G U kN+) ) UmD+] =
k=0

-m k
- ( u N+) (D D+

k=- I

we obtain by (3.1 -iii) + that

(3.5) H =-G UnN+•

It follows that for arbitrary hcH

00 C

h = 0UP U- nh HhH n 2 'NUh

-OU N+ H -00 N+ H

Hence the map

Z,%*~..*- ..... . . ....

:. .. .. . ..............:. . . .. .. .... . . .-. . . . .... . .. . .. . .. . . . . .. . . ... . . .

-. -.-."- : ? ". .----' .- ' -' -."-S. .< - - .. : ' -' , : .- -* ' -*, --. .:% ' -' ."- -: ' / ; ' .' 2 "- ---. , ' , ". -". .--.' - -: '. -. .-- " . -'
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defined by

(3.6) rh fP Un h 0

is isometric. Since for {hn}e 2 ~o :C NQ h U Un h eH, the map r~

is onto and thus unitary. By (3.4) we obtain (i). From (3.6)

r +Uh = P N U (n-1 ) h I = U (r h)

and (ii) follows. By (3.5) U is a bilateral shift of multiplicity equal to

dim N+ and the uniqueness follows.

3.3 Definition. The representation (U+, 1 2(0 co; N) 12( co, co; N +) is

called an outgoing translation representation.

For (U,H,D-) incoming we similarly obtain

(3.7) D = UN- N = D-O U*D

P and

(3.8) H- = 2 ®Un N

For the corresponding map r of H onto 1 -( co; N-) we define

. .. .. . . . . . . . . . . . . . . . . . ..2(
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Thus

i) r_[D_] = 12( -1; N_)

(ii) U = r- U1

- rQ

is the right shift on 12 , -;N_). The representation (U_, 12( -1; N),

12( ; N_)) is called an incoming translation representation.

Now let (U,H,D+,D) be the scattering system associated with the

regular maximal rank y process. The subspace N_ = D_ 0 U D_

(N+ = D+0 UD+) is the for-ward (backward) innovation subspace at n = 0.

Since for a scattering system (U,H ,D+,D_) we have

dim N_ = multiplicity U = dim N+,

we can arrange the maps r_ to be onto 12 (-c, C;P)

3.4 Definition ([2] ,[27]). The operator

S = r-r+ :1( , 2 ; Cp) - 12(_, ; C)

is called the abstract scattering operator.

Clearly S is unitary. Denoting by V the right shift on 12(-Cog00; CP),

we readily obtain by the translation representation theorem.

(3.10) sv r_r,+1V =r- Ur 1 = VS
I+

Let F :2(-c, ; Cp ) L (CP) be the Fourier transform operator. The

unitary operator

FSF 1  L2(cP) L2 (cP)

2 2
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thus commutes by (3. 10) with L the operator of multiplication by x.
X

It follows [11] that FSF_ 1 is a Laurent operator LO SeLO(B(CP)) such

that

S (e )

a.e. is a unitary map on CP .

3.5 Definition ([2] ,[27]). S is called the scattering ?natrix.

It is clear from the translation representation theorem that S is determined

to within right and left multiplication by unitary transformations on Cp

(i.e., to within coincidence, see Definition 6.8).

We next compute the scattering matrix S for the y process. Let

(0), (0)} be an orthonormal basis for N_. Let xj(n) =

un v (0) and define

"(n) = neZ

p(n

By (3.8), the process {'.(n)}_,, is a (centered) white noise process

with covariance R,,_)(n) = 6(n)l P, constituting the forward innovation

process for the y process. It is determined up to a choice of basis in

N. By (3.7), we may write

0o

(3.11) Y(0) =ZA(k)v(k) A(k) = (Li.(k))P A(k) = [0] k>0.:[.. J i ,j=l

(Wold's representation cf. [36, p. 56]). It follows from (3.9)
P 00

""r y (0) a3 0,.._ m m(0)}

ry.(0 = I (+

r-I k- -

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . * . * .n * . *
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Identifying N_ with Cp' we readily obtain the represenitation

(3.12) ry(O) = 5 cj(k+)

Consider the function

0(0

(3.3) Y~(zz) A f z?~

Byiteinoigpoets

0-p in i
H2(C) (k 12 {e .(e j0)1 <) 00

iA. A is on uatc oun e z 1, p.r121].eFrome(3 6 .)7

Sinc the traomnlateieso 1 O) ~ n terlna

combiation ar dens in (eF isa detemndbteaoeexrsin



25

*We now consider the outgoing representation. Let {EI(0), ... P (0))

be an orthonormal basis in N+ We similarly obtain

y (0) B B(k) E(k) B(k) = (a .. (k))P ,= B(k) =[01 , k<0.
001 i,j=

This representation constitutes the representation of y(O) in terms of

the backward innovation process {Ejn)}_. ,(n)

We define

F(Z) B ~B(k) z
0

which is analytic in jz I < 1. In a similar fashion to (3.13), we obtain by

* direct computation

(315 21T yy Me

with r being outer. Also

(3.16) (Fr+y1 (O)', .r+ . P (0))=

Combining (3.14) with (3.16), we obtain

Sr RA

* and thus

S = R.AT-

Using (3.13) and (3.15), one easily verifies that S(e ')is unitary

........................................ . a
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a.e. Xe[-Tr, T] . We thus obtained

3.6 Theorem. For a regular maxdmal rank process {y(n)} we have

(3.17) S = XAF 1

where S is determined up to left and right multiplication by constant

unitary matrices.

For the case p = 1 we have

3.7 Corollary. For a regular process {y(n)}_o-

m -

(3.18) s =

and s is determined up to multiplication by a constant of unit modulus.

Proof. The outer function A satisfies AI. = If I on T and thus =

a.e. where -, is a constant of unit modulus. 4

3.8 Remark. The scattering matrix S was defined by an outer and

conjugate outer factors of the density f . Since those are determined
yy

up to left multiplication by a constant unitary matrix, we may wish to make

a canonical choice (which amounts to choosing specific orthonormal bases

in N+,N_) in the following fashion: For r(O) we consider its polar

decomposition F(O) = KP (K unitary, P > 0) and define r1 (z) = K-I(z).

For r we have F (0) > 0 and (3.15) holds. This r is unique. Similarly
1 1 1

for A. In this way, the density f will have a unique S associated with

it. From the viewpoint of seeing S as the phase function associated with

fyy, this may be appealing. Note, however, that S measures the

............. .... . .
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interaction between the past and future of the process y (see discussion

following theorem 4.5) and uniqueness in the reverse direction (from S

to fy) is not possible.

. * .. .

. . . . . . . . . ... . . . . . . . .
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CHAPTER FOUR

THE INDUCED HANKEL AND TOEPLITZ OPERATORS

We call the unitary maps F_ = Fr_, F+ = Fr + the incoming and

outgoing spectral representations, respectively.

4.1 Proposition. We have

(i) F [D_] = H 2 (Cp)

(ii) F+(D+]= SH C

(iii) F-(Uh) = ,F-h heH

Proof. Gi) and (iii) follow from the properties of the incoming translation

representation. By the definition of S we obtain

F [D4 ] (Fr-r+ F) Fr 4 [D4 = SH2 (Cp)

4.2 Lemma. The operator

P-P4 : D+-).D- P+=

is unitarily equivalent to the Hankel operator H , and the operator

D P+ D+ -01D

is unitarily equivalent to the Toeplitz operator T 3 .
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Proof. For heD + and f = F+h we have

F (P-P F~ f FP h =FP_ FFFf =(F P F Sf

Since

F PF* Tr

we obtain

F (P P )F+ f =HSf fecl 2

and the following diagram commutes

P P

F F

2 - P H 2 (C)

Hs

The unitarity of F , F~ implies that PP~ is unitary equivalent to H.

This proves the first part. Now since

F (IH-P_)F f FF f F PF f =Sf - TSf =TT~sf =Tsf

the following diagram commutes
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D-L

F+ I I F

H 2(C) -H 2(Ce)

T S

which proves the second part.

4.3 Lemma. For HS' Ts we have the identity

HS HS +TS TS IH 2 (Cp)

Proof. Clearly,

H *g = 7(g)geH 2(CP)
S 2

It follows that for feH 2(C P):

H SH Sf =TI+S (7T_ (Sf)] = TTS [(I L -p iTT )Sf]

S~~~ S 2 CP

By a theorem of Nehari [31] (a vector generalization of which was obtained

by Sarason [41]), for a bounded Hankel operator H, L teexis

a function eL such that H,= H and

(4.1) 1H91
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Since always 5 _<lIi[, because of (4.1), is called a minifunction

for H [5, p. 6]. The question regarding the uniqueness of the

minifunction is of particular interest to us. In system realization theory

for a frequency response function OcHo (same reasoning holds for the

vector case), a central role is played by the Hankel operator HO

H2 - H2 H f = Tr(f). Now observe that if , 02CH_ are such that

H = H then H 0, and the positive Fourier coefficients of -2

vanish. Thus % 1- 2 = const. and H 0 determines (the analytic) up to

an additive constant (recall in this regard that the composition of the

reachability and observability maps determine the frequency response

function up to an additive constant). However, in general, (4. 1) does

not hold and the uniqueness of € inducing H is guaranteed by

analyticity (causality). In view of the central role played by S in

realization of stationary sequences (Chapter 7), the following theorem is

of significance:

4.4 Theorem. The Hankel operator HS determines S uniquely. Indeed,

S is its unique minifunction.

Proof. From Lemma 4.3 we note that frKerTS iff f is an eigenvector of

H SHS corresponding to the eigenvalue IHS  = 1. Since S = 7A T-1

every column of F belongs to this kernel. Thus, the projection of the

above eigenspace on the first coordinate in 12(0,w; Cp ) spans I'(0). Now

observe that for r(0) we have, because of its outer property in H2(B(CP)

(see e.g. [36, p. 76])

log Idetr(O)_ 1 log det f (X)dX >
(2 -)p/2 Tr _Y_

. . .... .. 7

.- . . ..°
.° . . . .
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so that 1 (0) is of full rank. We conclude that the aforementioned

projection is onto the first coordinate space. According to a result of

Adamjan-Arov-K rein [4, Corollary 3.11 for a Hankel operator H to

have a unique minifunction, it is sufficient that the projection of the

eigenspace of H*H corresponding to 11H$ 1 on the first coordinate

space be onto. The result follows. 4

There is an alternative way to rephrase Theorem 4.4. If we

consider the Laurent operator L of multiplication by c on L2 , then

(4.1) becomes

11I1i H11 = HL 1II

Since

H PHL, H2

one considers L as norm preserving lifting of H Thus, in system

theory, the uniqueness of the lifting is guaranteed by causality, the

lifting being in general not norm preserving, while for stationary

processes, the uniqueness is guaranteed by the lifting being norm

preserving.

Viewing a linear time invariant system from the input-output point of

view makes the frequency response function the sole accessible object

containing all pertinent information about the system. As to the

information contained in the scattering matrix, we have the following:

4.5 Theorem. The scattering matrix S determines the density f y(Y)
u oy

L.", up to the form
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(4.2) K *f (X)K

where K is a constant pxp non-singular matrix, iff

* (4.3) dim Ker TS = p

Proof. First note that for any representation of S

s = -1

with the columns of X in H 2(CP) and those of 7Y in H2 (C), the

columns of X belong to Ker TS. Moreover (on T)

Y*Y = (SX)*SX = X*X

Assume (4.3) holds. It thus follows that

( (4.4) X(ei ) = r(ei K

where K is a pxp full rank constant matrix. Thus,

[[1 *1 *.-..,yy*

X*(z)X(z) = !K K F z)f(z)K = Kf ()K z = e
T7 7 yy

proving the 'if' part.

* Now assume (4.3) not to hold, i.e., dim Ker TS > p We can thus

find a pxp matrix X(e iA) of full rank a.e. X such that the columns of

X belong to Ker TS and (4.4) does not hold. If we define

Y = xsx

.................................

°, ~~~~~~~~~~~............ .. .,. ... •..-..... .. ... '-.......".-"..."....-..-.'...--.-.',
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then the columns of :Y are in H (Cp ) and S= XYX - with Y Y = X X.

The result follows.

That the scattering matrix determines f up to the form (4.2) is

a natural consequence of the scattering framework. Indeed, for an

arbitrary non-singular K, the process (n) = K y(n) whose density equals

f = Kf K
yy

induces the same scattering system (U,H,D+,D_) as the y process.

We next characterize condition (4.3) on a process level.

4.6 Proposition. We have

F [KerT] = H (O)AH + (0)
+ S y y

Proof. Let 0 1 feKer T . From Lemma 4.3 it follows

H S Hf f

i.e.,

llt Is - I f II

By Lemma 4.2, we obtain for F =F feH (0)

I[ = II II

and eHy(O) . Thus
y

* +
F+[Ker T$] c Hy(0) AH (0)

" . . . -'-° " €'" ".'".'- ..- .'- '-.' .' .- - . .- . . . . . . ... . . .-. . . . . . . . . . . . .



35

Now let 7eHi(O)AH~ (0). It follows from Lemma 4.2
-y Y

H (F+C) =F

Let f F+E eH 2 (Cp'). We obtain

11H Sf 11 11I F:_ 1 1 C 11 11 jF E 1 1 If 1

and

H H f fs s

Thus f eKer T Swhich implies

F[ [H (0) AH (0)] C Ker T
y y

The result follows.4

By the unitarity of F

dim Ker T5  dim H (0)AH + (0)
Sy y

and since y is regular and of full rank we readily conclude

dim H (0)AH +(0) = p iff dim H (0)AH +(1) = 0
y y y y

4. 7 Definition [ 9]. The process y is said to be completely non-

deterministic if

H y(0)AH y(1) ={0}



L " " -"'-'. .. . .36 ~36

As is well-known (see e.g. [36, p. 731) for a regular maximal rank

process {y(n)}. no yj(k) k l, j = 1, .... p can be predicted without

error based on the past Hy(0). Being completely non-deterministic is

more restrictive; indeed, no value in H (1) can be predicted without error

based on H (0).

Summarizing, we can restate theorem 4.5 in the following way.

4.8 Theorem. The scattering matrix S determines f up to the form

(4.2) iff y is completely non-deterministic.

4.9 Remark. It is of interest to observe that since for a completely

non-deterministic process, the eigenvectors of H *H corresponding to

11IHS11 are only the columns of F, the projection of this eigenspace on the

first coordinate is not only onto, but also 1-1. In [4, Sec. 2] it is

shown that for any Hankel operator H : H2 (CP) - H2 (C p ) satisfying this

condition, its unique minifunction is of the form

PS p IIHII

Thus up to a constant multiple p > 0 all minifunctions of such Hankel

operators are in 1-1 correspondence with regular, full rank, completely

non-determinstic processes.

4.10 Example. Let {y(n) c_ have rational density

2
• fyy(X) =  IP(z)I 2

yy IQ(z)! 2

where the polynomials P,Q have no zeros in Izl < I and are relatively

prime. Since f e L1 , the polynomial Q has its zeros in zI > 1. Write
yy

- P 1 PP 2

• .- -. .-- - •--• - .- . -_.. ... .. .. -. . .- . .- . ._. ... --.. . . . . .-.. . . . . . . . . L - :£ 2 SJ ".. r '2: 2-" $ ...
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where P1 of degree k has its zeros on T and P 2 in Iz > 1. For
[",k jkP1 (z) n k(Z-j) C T we have

j=1 j .=1

P 1 (e ) eikX (-1)k k_ k~

P1 (e) j=1

Thus
y~k~ eP2 k

(4.5) s= k e - ¥ = (-2)kfl:
' e Q 'j=l

where IYj = 1 and ie is outer. In [5] Adamjan-Arov-Krein show that

(4.5) is the general form of unimodular minifunctions and that in this

case k+1 is the dimension of the eigenspace corresponding to the

singular value I = UJHs 11 (5, Th. 2.21. From Lemma 4.3 it readily

follows that this dimension equals dim Ker Ts . Thus +

dim H (0)AH (0) = k+1
y y

We conclude that a regular process with rational density is completely

non-deterministic iff it has no zeros on T.

4.11 Example. Let {y(n)},. have density

0 < m : f (X) < M < a.e.
yy

It readily follows that the outer factor FcH and, moreover, 1/rcH .

+.This reproduces a result of Bloomfield-Jewel-Hayashi [2, Th.1l]

" .. . ... . . ..- . .-.... ,-.... -..-... . ..- ,. ...-.... .--. '.,... . .....---..-.. 4
-. .. - o- -... .... . ... ........ . . .....O .... ...° ° . . .. °•.....

p .''' ..J•% ' '° ° ..' ' ° ' "% ' ' ' ' "- ' ° ' ' = ' - ° ' ' "" "° °' o ° " '° - - - • °° ° ' '
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Now let geKer T , for arbitrary feH 2

0= (T8 gf) gf -r '
r

Since r is outer and g/r tH 2 , we conclude

g/ H 2 H >H2 = C

Thus,

Ker T. = {x: XeC}

and dim Ker T. = 1. The process y is, therefore, completely non-

deterministic.

We now formulate a converse to Theorem 4.5. The question can be

posed as follows: Under what conditions is a function SeLG(B(CP)) a

scattering matrix of some full rank, p dimensional, completely non-

deterministic process. On an abstract level we first observe that any

ScL (B(CP)) which is unitary valued a.e. on T is the scattering matrix

of the canonical scattering system [2]

U = L , H = L 2(CP) , D+ = SH2 (CP) , D_ H(CP).

The above questions amounts to characterizing all scattering systems

(U,H,D+,D) for which there exists a set tpl .... p} of linearly

independent vectors such that

H span {Un j : j, .... , p, n=O, ±_, ....

i '; .; .; --. .;. ; i " i, ; .- . ; " --.-' i ; ' i ' : .' ,. .-' .' .. ..' ,, .. '. .' .- , .' ' ..' .' ... .' .-. '. -. .. . . .... ..-

• . ".: ".. .. ,. .; ;.. ... . " . , , , .".", , . , ..... K ~ " .-" .. ,- . , , " ., ,. .' ,". .'.- '_' '
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(4.6) D+= span Un., j=1, .. ,p, n 0)

D- = span (Un1~ j=', .,p, n 5 0}

and such that any other linearly independent set satisfying (4.6) is of

cardinality p. The corresponding process will be

{ (n)}. where E(0) p ~j~ and the spectral density is

obtained by f X?) =E (ITi~i) )r IE-r1

being the resolution of the identity for U. The answer is given in the

following.

4.13 Theorem. Let SLL(B(Cp)) be such that

Wi S (ei )s a. e. X a u nit ary m ap on P

(ii) dim Ker TS = p

Then there exists a p-dimensional full rank completely no n- deterministic

process y whose scattering matrix is S.

Proof. Let rip r2,.. span the kernel of T and define
21 rp S

r = r Cr I 2 1 ... I

Let

A sr
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Since Aj T rr(Sr.) + 77(SI'.) =TT (Sr.), j1,., p, the columns of

A = [A, A 2  .1At] are in H 2(C P) and by (i)

A*(z)A(z) =1r' (z) F (z) z = e i

If we define

yy 2 7TF(e ()

the theorem follows provided we show that F is outer and XA conjugate

outer. Let U = L, and define:

Al }CH 2 (C) D+ 1 pnsrCSH (CP).

Let

(4.7) H VUD)( +neZ neZ

It is easily verified that (3. 1) + - Mi, (ii) holds for (U,D+). In

[2] Adamjan-Arov show [2, Th. 2.5] that a quadruple (U, H,D +,D-)

satisfying (3. 1)- Wi, (ii) and (4. 7) has a scattering matrix S which

is unitary valued a.e. on T iff

n =HV nV U D+ = U D
neZ neZ

and, moreover, from their generalized functional model [2, Th. 2.1] we

need have

D_ - (Ce), D~ = H (Ck')2 + 2

A straightforward computation (mimicking the one in section 3) gives
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S =S

and the result follows. 4

4.14 Remark. We wish to comment here on a conceptual point. Note,

that the fact that S (or HS) are used subsequently in various model

reduction problems, and realization, is in no way. contingent upon S

determining fy. Indeed, in all those cases we use explicitly f in
yy yy

that we are able to identify F1y(O) = X. or F+y(O) = F.

. . . .- . .- b
o.

IF " o o° , .° ,' °°,-'oo', -'. -'. .'-Z , ,''° °'* 'o' -'oO', "° " "°.- ° - -° . -°,-.°
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CHAPTER FIVE

BLOCK MATRIX REPRESENTATIONS

In order to economize notation, we will denote the matrix

(( i'Tlj) by <~n T1 > (,rj= . Also, as before,

|r)

I"I
g.

Recall that {x(n)J0 [- V ''} are the +forward and backward

innovation processes for {y(n)}__. Let

<. 'Z(j) .(i) > i jeZ

[,J

By stationarity

<U]'(b), U ()> = (O), U = . ,> eT.

:. - _- iUjp

Denote

n n+1,0

We form the two-way infinite Toeplitz block matrix

They are determined to within a choice of orthonormal bases in

in N- ,N+ which we fix. See also Remark 3.8.

. £j ............................. ..
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2 0- 1' 2

A = -2 Y- 1 YO Y Y

From the definition of the scattering operator via the innovations

representations we obtain for the Laurent operator LS (with respect to

the standard basis)

[Ls A

As to the Toeplitz operator TS9 observe that with respect to the

orthonormal bases

{V (n), v2 (n), . (n) {En)£(n,.. nI
Ip nI 1 2 n >O

in D"L, D + the operator P~ JD+ has the representation

<E(0), v(2)>' < E(l) , (2)>'..............

00

<E( ) ( ) > ... ... ... ... ... ... 12 . . . .. . . .
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{Il(n), v 2 (n), ... , vp(n)} , {cl(k), 2 (k), ... , p (k)}
n<O k O

in D_, D+, the operator P_P+ has the matrix representation

'<E_(0) , v(0) >' <_E:(I) , v (0) >' <E:(2), %,-(0)>' YI 1 '2 -3"".

"_ <_E(O) , (-1)>' <-(I), v(-1)> . '-2 -3 ........

. < (..............> ............................ ..--3 ..............

so that by Lemma 4.2

Let

[Lsl [Ls1

[Lsl I [L
S[Ls] 21 [s] 22

be the partition of [LS] corresponding to the orthogonal decomposition

L2 (CP) = H2 (CP) (H 2 (CP). By our previous considerations,

[Ls] 21 = [Hs], [Ls]ll = (TS]

(Ls] 12 is the matrix representation of the Hankel operator mapping

H2 (Cp ) - H2 (CP) taking f - ,r+(Sf). Similarly, the Toeplitz matrix [L.1 22

which represents the map H (CP) - H2 (Cp ) takes f - i_(Sf). Combining
2 2

with Theorem 4.4, we obtain

[:-'-- "-.".-."'-.""--.-"i ' ." ?. .- -. . . -... .... - .- .. . ....... ... . . . .•
S. .,. .. . , -.. • •-" .., '".. '''-.. - ... '." .'.', . '-.-.. '..-.,.- .... '- .. -'.,_, -' ,,. -- . . -" ---.
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5.1 Theorem. The scattering operator S has the two way infinite

Toeplit z block matrix representation

[Ls =1r-- - -

where [H I determines [Ls uniquely.

We next obtain a representation for [HS in terms of the moments

-T

C <y(n), y(O)> = f (X)e iXdXf B(CP), n Zn >- y

Using the representation of y(n) in terms of the backward and forward

innovations (Chapter 3), we obtain

(5.1 C V(n), y 0) <>I B(k) (k +n) , -) (m
(5.) n = <'~ -k-mO

- 1~ B(k-n) 'Y'(m+k+l) A*(M)

Direct computation gives

CO 00

(5.2) ~IB(k)B*(k+n) =C n I A(-m)A*(-m+n) n=O, 1,.
k0O n --n

Form the triangular block matrices



46

B (0) A (0)

0 0
B (1) B (0) A'(1) A'(0)
B'(2) B'(1) B'(0) A A= A(-2) A I(- 1) A t(0)

From (5. 2)

C 0 C I C 2C 0 -1 C-2

B*B= -1 c0 , IA*A- C C -~1*

C2 -1 c0.* C 2  C 1  C 0 ..

In accordance with (3.13), (3. 15) we call B, A, the outer, conjugate

outer factorizations of the Toeplitz form induced by the moments

1C }0 (C =C )*Combining with (5.1) gives
nO -n n

C Ci C2

C' C'

A*[H S]B

L~ ~~~ . .. ..............
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CHAPTER SIX

MARKOV PROCESSES AND UNITARY DILATIONS

In a Hilbert space setting, a centered stationary process {x(n)}r

x(n) = Il n) is said to be Markov if for all n s

(x(n)

(6.1) P - x= P xeH +(s)
Hi(s) X(s) x

where X(s) = span{xj(s) j=1, .... , m}. In our setting, all stationary

processes will be generated by the shift U (on Hy) associated with the y

process. Thus, for a stationary process {x(n)}_ (in H r) we will have

x(n) = Unx(O). It readily follows from (6.1) that one can define the

notion of a Markov subspace with respect to U in the following (see [231,

'- (37]).

6.1. Definition. A subspace XCH is said to be Markov with respect to' , y

U if for all n s, xcX

(6.2) P unx =P unx
VSm USXsumxux

-00

Thus X is a Markov subspace with respect to U iff the process {unX X)
L-0-

has the (weak) Markov property. In what follows a Markov process

{UnX1 will invariably arise in this fashion.

. .° •° ,.. °° . - .,.. ••. . .° .- . .o •. ° ° . ° . ° o
,- ° ° , 

.. ° • .. •. . ' . -. °. • ". ,- . . . ° o ' ".. .. • .° .°, - °- - °
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We shall be interested in Markov subspaces (with respect to U)

XCH for which

(6.3) {yl(0), .... y p(0)) CX

In this case X satisfies

H vunx ,
y = C0

and we say that X (or U nX}_) is of full range. There is a direct

relationship between Markov processes of full range and unitary dilations.

Recall [301) that a unitary operator U on a Hilbert space H is said to be

the minimal unitary (power) dilation of a contraction A on X C H if

An P Px UnIX n > 0

and H = vunX (minimality).

6.2 Proposition. XCH is a Markov subspace of full range iff U (on

Hy) is the minimal unitary (power) dilation of

A =Px UX x

Proof. From (6.2), we obtain for x,x'e X and m,nk 0

(U-mx, Unx , ) = (U-mX, PxUnx)

+ We shall subsequently omit the phrase "with respect to U".

. .°

% %" "'%" ,--'.. %.
' . ' ' °

* 
' ' ' 

."' ".°" """ " 
' " ' ' '  "

."' ' "". " " " 
'  

' " " " " ' """" '
- .- N

I  
- .,?, . .o°- ..-°• •. -° -. . -... °.... ° .... ° . . . . ° .°° - . .- , - ," o ° .. ,-. ° - °,.mr 'h n ,r ,%,"- L-'.Z ; .'m ' - --- -. .' "" " . . .."- " " "_ " " ,, " -" < - " ." " ,"
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Thus, denoting A(n) = PXU n I X, we obtain

(x, A(m+n)x') = (x, U m +nx') = (U-rX, UnX ' ) (U-mX, P x Unx) =

= (x, P UmP UnX ' ) - (x, A(m)A(n)x')x x

We conclude that A(m+n) = A(m)A(n) and

A(n) = An(1) = An.

Since X is of full range, i.e., Hy = VU X, we conclude that U in Hy is the
Y -cc, Y

minimal unitary dilation of A (in X). This proves the 'only if part. The

'if part follows by reversing the argument.

n nThe semigroup {A Ink0= PX U nlxOI will be called the Alarkov semigroup.

Much in the same way as for a regular process we make the following:

6.3 Definition. A Markov process {UnX °oo C H is said to be regular if
-0 y

A V Unx= {- V Ukx
n<O k_<n n>O kn

We shall occasionally also refer to (the Markov subspace) X as being

regular.

The notion of regular.ty for a Markov process is intimately related to the

asymptotic stability of the static operator A (see Corollary 6.5 and

Theorem 6.11).

The correspondence between Markov processes and scattering systems is

established in the following:

6.4 Theorem. Let XCHy be a regular Markov subspace of full range.

....
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Then H decomposes and, moreover, uniquely into the orthogonal sum
y

(6.4) Hy =D G)X Q)D+

where (U, H D+, D_) is a scattering system.

Proof. Define

D+ = (V U ) (X

(6.5) n >_O

D =( V UnX)G)OX
n<O

We first show

(6.6) UD+c D+

Note that

D+ =V UIH - PX)Un X

n :O y

For arbitrary x,xeX and n ? 0

(U(IH - P x)U nx,x) = Un+1Xx) - (UPxUnx,x')

y

nlnn+1 n(A xx') - (UA x,x ' ) = (An+X,x') - (AAnxX ' ) 0

It follows that

UD . X

and since UD C V u x we conclude (6.6). Similarly, we obtain U*DCD.n-0-

'ji.*. .1' :
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To prove that D -D+ we note that it suffices to prove

m<O

Since for arbitrary x,x'eX, and n,m > 0

- PX)Unx, UX') = (UnX, U-mXe) _ (PxUnx, U-x ,) _
y

(A m+nx,x') (A mAnx,x') = 0

CO

the conclusion follows. To prove that A UnD+ = 0 Y observe that

COC n -&-O 00 -003

( D9 (AUnD+) = {0}
-00 -0

By regularity, we obtain that on the space K+ = V UnX the operator

n_0

U+= U IK+ is an isometry having no unitary part (Wold's decomposition

[30, Th. I.1.1]). Moreover, from the structure of the space of the

. minimal isometric dilation (of A) [30, section 11. 21 , we obtain

K+ E G un+1N N D U*D_
n=0

CO= '(D Un N and
Since X is of full range, we have Hy =

(6.7) VUnD =H
-00 y

" In a similar way,
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y -

00 n

: .:(6.7)+ VU UD+=:H .

'."We therefore established that (U,Hy,D+,D) is a scattering system. To

is another decomposition, then UX U; UD D and, thus UX C X GD.

It follows DC X G) D'+since D+- X we obtain

Similarly,

However, D GD =D' GD' and uniqueness follows.

6.5 Corollary. A full range Markov subspace is regular iff +

strongly.

Proof. From the proof of the last theorem it follows that X is regular iff

(6.7) holds. Combining with [30, Th.II.1.2) gives the desired result.

6.6 Definition. A scattering system (U, H,D +,D-) for which

+For a finite dimensional X both convergences are equivalent.

. ..-

. . . . . . . . . . . . . . . .
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D_ D

is called a Lax-Phillips (L-P) scattering system.
L nXlW
Let {unx_0be an arbitrary regular Markov process of full range,

and (U,HyD+,D)X its associated L-P scattering system. Let Ox(e ) be

the corresponding scattering matrix. For the corresponding incoming

spectral representation FX9 we obtain from Proposition 4.1

FXED[P_ H 2 (CP) , FX [D+] O= ®H 2 (CP)

Since

+X Ho(B(Cp))

To each regular full range Ilarkov process there is thus associated

an inner function Ox, which is the scattering matrix of the corresponding

L-P system (U,H ,D,D _ x , According to Proposition 6.2 and Theorem

6.4, characterizing those inner functions amounts to characterizing all

those L-P systems (U,H,D+,D) for which U on H is the minimal unitary

- dilation of the contraction A = PxUIX, X = H 0 (D_ (D D+). By

[27, Th. 111.1.1], U on H is a dilation, and combining with [2, Th.3.3],

we obtain

6.7 Proposition. The scattering matrices 0 associated with regular full

range Markov processes are those and only those inner functions

EGH (B(CP)) for which

(6.8) 110(0) 11 < 1

. . . . . . . . . . .

I , 
°  

. • -. . . • - o - • .oo.- o o ". . . . . .o .o oo . o .. . . .°° ". '. . °.o " .

' . . . . -. . . . . -. . -. . .. " .. . .. . . - . - " " -', : " e . ". ' ". ', ' '. - -
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An inner function OeHc.(B(CP)) satisfying (6.8) is called purely contractive

(30, p. 188]. For p = 1, this amounts to being non-trivial.

Recall that the scattering matrix was defined up to left and right

multiplication by constant unitary matrices on CP . This follows from the

arbitrariness in choice of orthonormal bases in the forward and backward

innovation subspaces, and cannot be avoided. We make the following

6.8 Definition [30, p. 132]. ®eHOO(B(CP)), and 1eHo(B(CP)) are said

to coincide if for unitary maps T, T2 on Cp

T 1 = 0(z) I z < i

The equivalence relation between Markov processes is obtained by

6.9 Definition. We say that the Markov processes {unX}_o, {UnXl_Oo

are equivalent if GX , 0 X coincide.

It readily follows from [30, Th. VI. 2.3) that the corresponding Markov

semigroups are unitarily equivalent.

While the correspondence

X--(U, H y, D+, D_) x

is 1--1, the same does not hold for -X9 two distinct Markov processes may

have coinciding scattering matrices. However, as we shall see in the

next section, if we see (as we do in our context) two processes y, yI'

as equivalent if they have the same density f then the above equivalence
yy

relation is the right one.

Combining with Proposition 6.7, we obtain

6.10 Theorem. All equivalence classes of full range regular Markov

processes are parametrized by the inner functions CDH(B(CP)) such
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that IiNO)II < 1.

We next obtain a dynamical representation for a Markov process.

6.11 Theorem. Let X be a Markov subspace. Let {x (O), ... , () }

(k < co) be a complete orthonormal basis in X. Then for x(n) = unx(O),

x(O) (0) we have

(6.9) x(n+l) = [Alx(n) + [Blw(n) n > 0

where

(i) { W(n)__ is a normalized white noise vector

process of dimension p.

(i) {w(n)} is orthogonal to x(0)

The above representation determines [A] (the matrix representation of

the state operator A) and [B] up to unitary equivalence.

Proof. Let (U, Hy, D+, D_)x be the corresponding scattering system.
00

Write D, = D O nN, N+ the backward innovation subspace at t = 0
w .(0)

for D+, dim N+= p. Let the entries of w(O) :(0)) be an orthonormal

= nW) Sin n
basis in N+ with w(n) = Unw(0). Since N+-N+ (n 4 0) {w(n)1__ is

a normalized white noise process, and X .D+ implies that {w(n)}n>0 is

orthogonal to x(0). From (6.5)

UXc X (DN

.-Its covariance matrix equals 6(n)I P.

• C
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and thus

(6.10) Ux (0) P PxUx j(0) + P N Ux (0) =Axj (0) + PN+Ux.(O)

Let

C~j=(Ax i(0), x j(0))Hy , b. =j (Ux.(0), w.i(0))H

and define

[A] (a.. , [B] =(b.j)

From (6. 10)

x(l) =[A]x(0) + [B]w(0)

applying U to both sides gives

x(n+1) = [A]x(n) + [B~w(n)

Since the above representation is unique up to a choice of orthonormal

bases in X, N+ the theorem follows.

The notion of equivalence between Markov processes is naturally manifested

in their dynamical representations:

6.12Theoem. f {U X, {nX 1 } are equivalent Markov processes

(with X as in Theorem 6. 11), then Xadmits representation (6. 9) for

some xl, wv1 playin g the role of x, w in T heorem 6. 11.

Proof. Let (U, Hy, D , D )X, (U, H, D' ,D' be the correspunding
+- 1
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scattering systems, and Fx, FX the incoming spectral representations.
I

* It readily follows that for the unitary operator

(6.11) L = (Fx) FX

we have:

S(i) L[D+I :D', L[X] =X 1

(ii) LAx = A1 Lx x X , A PxUIX, AI  PxIUIXI

The result follows from the construction in Theorem 6.11.

46:-

[ • , "...................... . -.......-....-...-...... '.-....-..-..... ..-... ..-. ..-......-..... ... .
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CHAPTER SEVEN

MARKOVIAN REPRESENTATIONS AND FACTORIZATION

OF THE SCATTERING MATRIX

A regular Markov subspace X C H is sa-lr to be a representation

for the process y if

{y(0), ... , y p(0)}C X

Indeed, in this case we can write (notation as in Theorem 6. 11)

y(0) = [C]x(O)

for some matrix [C] , and applying U to both sides gives

(7.1) y(n) = [Cjx(n)

a dynamical representation for the regular process y in terms of the

regular (and necessarily full range) Markov process x. We first show

that equivalent Markov processes are indistinguishable provided we do

not distinguish between processes y, y having the same spectral density

(and see them as equivalent).

7.1 Theorem. Let X C H be a regular Markovian representation for y.

If {UnX }0 is equivalent to (UnX}_ , there exists a process Y, equivalent1 pe n

to y for which X1 is a (regular) Markovian representation, and for which

. . . .
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(7. 1) holds (with y,, x, playing the role of ~,x)

Proof. Let L :H +H ybe as in (6. 11). By the properties of the

* incoming spectral representation

LU = UL

Define (componentwise)

Y( = Ly(0) yl(n) =Un, 1 (O)

We obtain

<Y1 (n), yl(O)> <U Un Ly(O), Ly(0)> =<L Uny(O), Ly(0)> = cy(n), v(O)>

and therefore

f MX f MX a.e. ~

Since L[X] = X1 P, is a regular Markovian representation for yland by

Theorem 6.12 (7.1) holds. 14

By the last theorem and Theorem 6. 12 we can translate the question

of finding all regular Markovian representations for y to L 2 (CP). For

* each inner function E®cH (B(Cp)) (as in Theorem 6.10) we consider the

* orthogonal decomposition

L 2(CP) 2 * (CP) ® (H2 CP) (D E*H2 (CP)) H H2(Cp~)

+ Note that the converse is trivial, see Theorem 6. 12.
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inducing the L-P scattering system

( L L2(Cp) , H2 (CP) , *H2 (CP) ) .

+

corresponding to the full range regular Markov subspace (with respect

to Y)

X= H2 (CP) ( 2*H2(CP)

Now recall that for the incoming spectral representation F_ (for

the scattering system associated with the y process)

FY(O) = V

Thus, finding all regular Markovian representations for y reduces to

the following:

Find all inner functions 0 IH (B(CP)) such that

(7.2) 7AeH 2 (C p ) 0 0* H2(CP)2 1 2

7.2 Theorem. All regular Markovian representations of y are parametrized

by those and only those inner functions C)1 for which
°1

+ The corresponding decomposition in which X = H (C p E) 0) H (C p )

(the model space, cf. [371) will not be used here since e wish Hs to play
a central role.

." Since A is conjugate outer the corresponding Markov subspace will
automatically be of full range.

. ...

i. '.-.':.i.?-?"." --. " -.-. '.''':,... .. "..-. .. - .-. .. . . ".-.. . . .... . . .- . . . -'
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(7.3) S 0 QE2 2Ho(B(CP)) +

Proof. (7.3) holds iff 01<AeH 2(CP) iff O1SFOH2(Cp )  Since F is outer

the latter holds iff E)SEH 2 (CP). Since 01ScL,,(B(CP)) the result follows.

The possibility of writing the scattering matrix S in the form (7.3)

has an interpretation on a process level. By the Beurling-Lax theorem,

(7.3) holds iff (the invariant subspace for the left shift):

(7.4) H2 (CP) (D (range Hs ) is of full range (for >).

++
By Lemma 4.2 this is equivalent to

(7.5) H (0) 0D P H-H + (0) is of full range (for U).y H

An LC(B(cP)) function satisfying (7.4) is called strictly non-cyclic ([121,

[151). The process y satisfying (7.5) (i.e., having a strictly non-cyclic

scattering matrix) is called strictly non-cyclic [29].

Recall that two inner functions U,VeH.(B(CP)) are left coprime if for

no non-trivial [i.e., for no unitary matrix in B(CP)] inner function W

we have

U =WUI  V =WV

with U1, V inner. Let

+ 02 is necessarily inner since S is unitary valued on T.

+ For the p = 1 dimensional case the equivalence of (7.4) and
(7.5) is due to Levinson-McKean [28].

S . , . _ . . .. •...,- - -,-",..-. .-. ". - --. --.- ,-.'-'''- - .. ,,-.''.-'' ",",i ' - -; 'i 'i 'i ''.,-i

.- ,.- • j • .-°° • "°o°.'.°.,-...,. o...........................................................-.............° .* -
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S Q

be the (left) coprime factorization for S. For the inner function Qwe

have by the Beurling-Lax theorem

range Hs = H2(CP) 0 Q* H2 (CP)

If S= LUj1 U 2 is some other factorization, then we necessarily have for

some (non-trivial) inner function W

U1 =WQ1  , U2 =WQ 2

Now observe that for inner functions UP Q1 in H.(B(CP))

U~ H_(Cp) CQ*H_(P1 2 1j ' 2 ( )

j ff

Q U" H2 (CP) C H2 (CP)

i.e. , iff for some inner function W

(7.6) U1 I WQ I

It follows that for the (regular full range) Markov subspaces

XQ H_ H() Q (CP), Xu. H -(C~) 012C

we have
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X C X
Q U1

Thus, XQ1 is the smallest (setwise) regular Markov subspace

representing y. Let us call a regular Markov subspace X CH representing

y minimal if no proper subspace of X is a Markovian representation of

y. Note that for the minimal subspace X we have the orthogonal

decomposition

L2 (CP) Q1 H2 (CP) G (H2(cP) 0 Q1 H (CP)) 0 H2 (CP)

which under F 1 goes to

(7.7) HY =(H (0) G( PH+) )® PH(0)H (0) ( H+(O) 0 Hy(O)

We established the following:

7.3 Theorem. Let y be strictly non-cyclic, and

o°=
S- Q1Q2

the (left) coprime factorization of S. Then the equivalence class of all

regular Markovian representations of y (or an equivalent process to it)

which corresponds to Q is minimal. This class is represented in

L (CP) by the subspace
2

X H(C ()Q* H2 (C p ) = range HS×Qi

+ Which is necessarily regular.

i . . • .°° Oo.O .i , .°. .° .'• ° .. - % m ° ... - . . ° . . "° . , .- . °. "

. . :.... . .. ..........-.-.---.. .'- .--.. .- . .- -.i'.. ...- -"..-".. .'--. .".. . . .'.. . . . . . .'.. . . ii2 'i .I - i-
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For each such Markov subspace, there exists a process _ equivalent to
+

Y for which (7.1) holds.

In a similar fashion, one obtains that all factorizations

S = U2 U*

parametrize via the inner function U1 all regular Markov subspaces X C H
Y

representing y. The minimal one is obtained by the (right) factorization

S = P 2P * and its representation in L 2 (CP) is X = 2 (C P) ) PH 2 (C p )

(see footnote on page 60 ).

A number of observations are in order. First, note that the

general degree theory for strictly non-cyclic functions [15, Ch. 111.5]

arises naturally in our context. All regular Markovian subspaces XCH y
representing y which are in the equivalent class parametrized by the

(purely contractive) inner function Q(H.(B(CP)) will be of degree

(7.8) d(Q) = det Q

an inner function in H o(its scalar multiple, see Nagy-Foiaq [30, p. 216]).

From (7.6) we obtain

d(U I) = d(Q 1 )d(W)

and thus the degree of the minimal subspace is the lowest in the sense

that d(Q) is the weakest (i.e., it is an inner divisor) among the degrees

of all other regular Markovian subspaces representing y. Second, we

+
With playing the role of y, and H . = H

%

"~~~~~~~~~~~~~~~~~..:-"-.'.'.'i.' .i..-......:."..,'....................-......."...... ...... :....-.. . ... ..-......-.,
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observe that by inspection [see (7.7)], all minimal Markovian subspaces
+

representing y are observable and constructible and conversely, all

observable and constructible regular Markov subspaces representing y

- are minimal. Moreover, we have exact observability and constructibility

iff range HS is closed.

+ The regular Markov subspace X is said to be observable if

PxH; (0) = X, and constructible if PxH-(0) = X. It is said to be

exactly observable or constructible if PX H y(0) = X, PXH (0) = X

respectively. See [371.

........................................
.o .
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CHAPTER EIGHT

MODEL REDUCTION

The question of model reduction for stationary processes is

distinct in nature from the corresponding one in systems theory. In

the latter, model reduction has a natural formulation in terms of inputs

and outputs. Thus, the system is represented by a black box:

input T output

whose output y)el 2(o,; Cq) when inputed by uel 2 (-, Ci') is given by

~=Lu

where L: 12~o, Cp) 1~ 2(~) Cq) is a bounded causal [L1 2 (0, o;Cp)C

12(0, -; Cq)] Laurent operator (input-output map) with symbol

Y2

Te]H[(B(CP, Cq)) (frequency response function). The (minimal) state

space of the system, i.e. , the lowest dimension of x in the dynamical

representation +

x(n+l) = [Alx(n) + [Blu(n)

(8.1

4)(n) = [Clx(n)

+ We assume T(0) [0].

....................
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+

equals rank HT = k. One way to formulate a model reduction problem

in this context is the following: Given T find a (system) function

T eH (B(CP, Cq)) (with corresponding Laurent operator L m) with rank

rank H < m < k, such that if the two systems were inputed by the
m

same u-1 2 (-o, -1; Cp ) up to time t = 0:

u_ T 10

u-

Tm W .

for the corresponding outputs from time t =0 onward . + 12(0 0;C )

we have

I1<,- Il2 - rin.

+ 2

* over all u_l2(-, -1;CP), flu_ ii 1 (normalization condition). Taking

Fourier transforms, we readily obtain

min sup{fi(iT-HT )cf*-L2 : *pH2(CP), L _ 11ST m 2 2
m

where the min. is taken over all T m H (B(CP such that rank

H, 5 m. Thus, we have
m

+ HT being the Hankel operator from H2 (CP) (Cq)

. . . . . . . . . .
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m'.i HT - ii
Tm

a classical Hankel approximation problem [7].

This input-output notion is not adequate in the context of stationary

sequences. While a realization

x(n+l) = [Alx(n) + [B]w(n)

(8.2) n z0

y(n) [Clx(n)

resembles the one in systems theory, one should keep in mind that the

notion of inputs is absent, and the sequence {y(n)) .(or a sequence

equivalent to it) plays a distinct role. One approach close in nature to

the above model reduction formulation is to approximate this sequence.

We wish, however, to emphasize that while we formulate the approximation

problem geometrically in the space Hy, the object we seek is the

approximating spectral density. Thus, all approximating sequences

which follow will 'live' in H and will be, with respect to the unitary

operator U, on H y. The resulting processes will be, therefore,

stationary correlated with y. Observe that approximating the sequence

{yv(n) }00 or an equivalent sequence to it are thus indistinguishable.

Problem A. Let {y(n)}7w be the given process with (minimal)

representation (8.2), dim x = rank HS = k o. Find a regular process

{(n) I of dimension p such that for its corresponding (minimal)

representation

.- .-. S.... e Z -e.-....---. ..............-.......................... . .-..' -.. -. -. .-. . . .......---....-. -.. ---..-...-.v .... :''".. --.. .".. . --.-.. . . . ."."- .,". .. .-.-.-.- r. . .".".""'" . .""
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x(n+1) [ A]x(n) + [B]w(n)
neZ

x(n) Cxn

we have

(i) dim xm< k

and, moreover

(ii) sup{I11y.(n) -yj(n)II H j=l, .. ,P, neZ} =min.

Assume first p=l. Let {y(n)}', be a solution and X one of its minimal

regular Markovian representations (dim R ,mi). Define

Y(O) = P^jy(O)

By the orthogonality principle, we obtain

"2 2> 2 2
E (0) = I( 0) - 0y(11I > I y (0) Y-(0) 11 -(O)

Clearly for the process

{Un (O) neZ}

the (minimal) state space is of dimension not exceeding in. By

stationarity

~(n) y jj(n) j y(n) 11 =jjny(O) - nfl(o)~ 11 2(o)

and

2
E:(O) = sup {jjy(n) - (n)II neZ (O)

We readily conclude
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Y(O) P P^y(O)

As for arbitrary p, we note that the above procedure extends componentwise

for each yj j=l, .. ,p, and thus for the process y we need to have

YJ(O) =P~yj(0) j=l, ... , p

Our problem thus reduces (in the space H )to the following:

Find a regular Markov subsp ace X CH Ysuch that:

(i) dim X m

(8.3)
00i max distH (y. (0), X) = min.

j=,...p Hy

Observe that if E- is the minimum above

I(Cnj (C) .1= (ypn), yj(O)) -(yi(n), yj(O))I 1

5 1((y.(n), yj(O) - y(O))j + - Ai~n1Y I(y (n) y j ,y(0))[ 2 2~yi

Thus for all n

p p

iCn n I ~2) i ~ 2 ] i Yi

Since yis regular and of full rank p, it follows from [30, Prop.

1.2. 11 that X is of full range and, therefore, belonging to the equivalent

class of regular full range Markov subspaces parametrized by the

(purely contractive) inner functions GeH0,(B(CP)) for which CC)) [see
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(7.8)] is a Blaschke product of degree .< m. From Chapter 7, (8.3)

translates in L2 (CP) into finding a Q for which

max dist ( A, H2 (CP)GQ*H 2 (CP)) = min. , A = [A,)...I] A
=. . p L . C p )

8.1 Proposition. Let 0fH.(B(CP)) be an inner function and gcH2 (CP).

Then

P *'(CP)g + Gg.
22

Proof. One readily checks that 0*; CgeH 2 (CP). Since

+ 2-. g -eTr Eg - 6*[Eg- T+Eg] -e9[ (I T )Dg] -D Tr g H (C P),

the result follows.

Now observe that

- *
A OOA = 7T 0A [EX A -r 0 7 A] =O*T (OV7A) (D*HHS

Problem A therefore admits the following equivalent formulation:

Problem A-. Find an inner function Qe-I(B(CP)) such that IIQ(0)I < 1,

and the following holds:

(i) d(Q) :< m
(8.4),.':(ii) max [IIHQsrjII = min. r F[ IF.. rp]

-" =1 .... ,p L 2

+ i .e., the Blaschke product is of degree < m

. .
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We first establish the existence of Q solving (8. 4) for the case p = 1.

8.2. Theorem. There exists an inner function q + of degree <m

such that

(8.5) IIHqsPI = mmin { 1H F: u inner, degree u , m)

Proof. Denote by 6 the infimum of the right hand side in (8.5) and let

{Un } be a sequence of Blaschke products such that IHu r 11 - 6. The
family Uo, uI .... is uniformly bounded in Iz I < 1, in particular, on

compact subsets of jz I < 1. It follows (e.g., [39, Th. 14.6]) that there

exists a subsequence fu n converging uniformly on compact subsetsnj=0
of IzI < 1 to a function q H.0which is 0. By a theorem of Rouchg

[39, p. 242], it readily follows that if Ial < 1 is a zero of q, then there

exists a sequence {a n. I in Izi < 1 such that lim a n a and for some N
J j=O j- I

U (a =0 j N

Since each u has at most m zeros in z < 1, q has at most m zeros. n
in Izi <1. Let 0<r 0 < 1 be such that q has no zeros in r0 <_ lz <1.

Applying once more Rouche's theorem, we conclude that for some integer

NOV all un. jZN 0 have the same number of zeros in r0 < I z < I as q,

i.e., none. This implies that the family {u } is holomorphic in an3 j_ N°
region containing lzj < 1. We readily conclude that q is an inner function

having at most in zeros in jzj < I and none on IzI = 1, i.e. a Blaschke

product of degree . m.

+ Clearly q is non-trivial.

. . .. . b.
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As for general p, by a normal family argument one obtains a

subsequence 0 converging uniformly over compact subsets of zI < 1n.

[uniform topology in B(CP)] to an inner function Q. Applying the

argument of the above proof to the inner functions d (0 n) which converge

(uniformly over compact subsets of zI < 1) to the inner function d(Q),

we conclude that Q is of degree d(Q) (a Blaschke product of degree) m.

To show that it is purely contractive, we note that if for some 0 aCeCp

jIQ(0)all =11all then Q(z)aeH2 (CP) is a constant function and thus,

considering IIQ(z)alleH 2 we obtain 110n (z)al - IjQ(z)all uniformly over

compact subsets. By Rouchd's theorem, this is impossible since the Gn.
are purely contractive. We conclude that Q is purely contractive.

The solution obtained is not necessarily unique, and, moreover, it

is not obtained in a constructive fashion. A weaker version (which is

nonetheless no less interesting) is obtained by trying to minimize IIHOs11

over all admissible 0. For the p = 1 dimensional case, a constructive

solution can be obtained by employing the analytic properties of Schmidt

pairs for a Hankel operator [7]. Thus, since

1Husr 1< - lHus 11 Ir

* we have

*. min{IIHus r 11: u inner, degree um} min{iIHus I: inner, degree uem} jjr I

and we consider

Problem B. Find an inner function q such that

+ This inner function q will be found to be non-trivial (see Theorem
*" 6.10).
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(i) degree q _< m

(8.6)
(ii) i1Hqs I = min

We make the assumption (which we later characterize on a process level)

that H is a compact operator. Let

1 = s0 (H)s (Hs)_

be the enumeration of its non-zero singular numbers (s-number)

repeated with multiplicity (which is finite by the compactness). These

are the positive square root of the eigenvalues of

[H s ] *[H s ]

If H is of finite rank k < o, 0 is an s-number with infinite multiplicity

and the enumeration will be

1 = s 0 (H) .. > Sk (Hs > sk(HS) = Sk+l(HS) - ... = 0.

8.3 Theorem. Let

.. > -Sl(H )> s m(H )_ .

+

then there exists a unique q of exact degree m satisfying (8.6).

Proof. Denote by B the family of all Blaschke products of degree 5 m.

By a result of Kronecker (cf. [35]) for ceL. rank H :s m iff =ZLh

+ Up to coincidence.

.'. .'°%'°..'.- .. .• .- %'°." -'%- . . .. ... ......•.° ,,- .° ... . .-, ......... . ..
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with ueBm heli ~ Combining with Nehari's theorem, we obtain

mm

inf infjl(s - Uh) -gj = inf{jH- H JJ1 rank H m m}sm(H
00H m

heH

Now assume that u1 , u 2 satisfy (8. 6). By Nehari's theorem we obtain for

some h hELHm1'2

s Hli) 11IHu11 11 ujs -hjj u l uh. j=1,2

It follows that for the Hankel operators H-h (of rank -<.m) we have
3

f1H- Huh1  h 11 =s (H )j =1, 2,

* and, therefore,

S (H) 1lH, -H- 1 1=H -H-

By a theorem of Adarjan-Arov-Krein [7, Th. 1.1] there exists a unique

Hankel operator H Omof rank m such that H8 - H I=sm (Hd. We

conclude that

H =H- =H-h

Sul hl u 2h2
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Let q be the inner function of degree m such that

range H =H 2 E) H 2

It follows that q is an inner divisor of u1 and u2 . Since u1, u 2 are of

degree 5m we conclude that u1, u2 , q coincide which completes the

proof. 4

8.4 Remark. Note that for m = k - rank Hs the inner function q

coincides with the inner function q in the coprime factorization s : qlq2

(see Theorem 7.3).

This q is induced by the unique rank m Hankel approximant H via

X H® E q H-=range Hq 22

, On this Markov subspace in L2 (with respect to X), we project

F-y(O) : -1, and thereby obtain the approximating process y induced by

q. Indeed, in the space H we have
Y

H X F -1 [X]
y q q q

y(O) is obtained by

"(0) : PX y(O)

q

n

and we set y(n) = U ny(o)

Incorporating [71, we thus have the following procedure of

constructing the approximating process y with its density f- which are
yy

-......-. -..................- . .-.-..-....-........ .........................
...-. .-.... .....-.. ... .......... .... .......... ... ..... ... ..... ..... . . . ; -.. ........ .. ...... ,...-...... .-
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induced by q:

Step 1. Let Sm1 (H ) > Sm(Hs) have multiplicity ., and

1' 2' "" 12 (0, Q;C) be the corresponding eigenvectors, i.e.,

[H sl[ j A s 2 (Hs j= 1, 2, .. i

Let

00

f.(Z) = i~(n) z ,H 22
n=O

Factor

f I.(z) = u.(z) ij(z)

* where u. is inner, j outer. The desired function q is

q = uI Au 2 A ... Au

i.e., the greatest common inner divisor for the u. [7, Th. 1.2). By

Proposition 8.1 the projection of x r onto X is given by
q

q r+ q

|~

- Step 2. Factor

q" r+qr X = X Cite

,' where is inner, Pe outer. Observe that

. 2 ... -*- --.- *
. . . . . . . . . .
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=n (y(n), y() =Fy~) F = ( e )

Ye e

Thus is an outer factor for

f~,X 1 - ej(e )j 2

the density of the yprocess.

We next obtain a bound on the normalized difference

cn en~

between the moments c. (y(n), y(O)), cn (y(n), y(O)) of the

I c~cn

Porof.Fomedis cssneceigpoles..n tepofo

The orem ton 8., We ba

I~~n -~() IH= cO - y()j IHr"

c I mst S m

Prof FrTo the vaincesio 2 rcdn ofbe - n hpofo
Thoe 8.3 the obtprcess

Il. ) ..njj . j ( ) j 0 j I
. . . . . . . . . . . . . . . . . . .. . . . . . .

Y 2 . . . . . . . .. . . . . . . . . . . . . . .

* qs 1F 1 
.H.)V

. . . . . . . . . . . .. . . . . ..2
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Thus,

..n" - = (y(n),y(O)) - ( (n),y(O))

0 -2 -if(y(n) , y(0) - y(0)) + (y(n) - y(n),

Sm(Hs) + Sm(Hs) < 2 s (Hs)
0

We make a number of observations. First, observe that

ly(o)- y(O)IIH = 1iF - Pi *e IlL
y 2

Thus, e can not be seen as a rational approximation in L norm to the
2

outer factor F of f . If rank H is infinite or otherwise if the singular
yy S

values drop sharply, (8.7) demonstrates that the process y is a rather

good approximate to y. Second, we note that the assumption about

the compactness of Hs is not a necessary one. Indeed, the spectrum of

a bounded Hankel operator is the union of its point spectrum and its

essential spectrum [34]. The analytic properties of Schmidt pairs were

given in [7] for a general bounded Hankel operator and, thus, our

construction carries over to this case mutatis-mutandis. The multiplicity

- of sm(Hs), however, may be infinite in this case.
We now characterize the compactnes3 condition on Hs on a process

sH

level. For any two subspaces M, N of a Hilbert space H let

p(M,N) : sup{'(fg)H: feM, g 1N, 11f9lgJ1 1 11

It readily follows that p(M,N) = 1IPMPN f. If p < 1, M,N are said to be
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at positive angle [221. A process y is said to be strongly mixing

(Yaglom [43]) if

P (H (0), H (n)) 0 (nloo)

i.e., its distant past and future are nearly orthogonal. It is known

(see e.g. [221) that a regular process is strongly mixing iff the operator

PP+ is compact.

Combining with Lemma 4.2 we conclude by using [32]

8.6 Proposition. y is strongly mixing iff H is compact, i.e.,
S

Se H (B(CP)) + C(B(CP)).

Processes with rational density are thus strongly mixing. Helson-

Sarason [22] characterized the spectral density of (1 dimensional)

processes which are strongly mixing

f = P 2 exp (u + v)

where u,v are continuous on T, v the Harmonic conjugate of v, and P

is a polynomial with roots on T. In particular, densities which are

continuous and strictly positive are in this class.

8.7 Remark. As for the vector generalization of the above construction,

we remark that if H m is the best rank m Hankel approximant to HS ,

+ C(B(CP)) denotes the continuous, B(CP) valued functions f on
the circle.

[..,-......-.. ..., ..,.-...-..-..-....,,. ._.. .. .. . . . .. " ... •..".. ... . .. .. . . . . . .
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the solution can be carried over provided we guarantee that Omis

strictly noncyclic, i.e.,

EH(B(CP)) inner, PeHjB(CP)), and, moreover, 110(0) 11 < 1. We

did not find a way to guarantee it.



82

REFERENCES

[1] V.M. Adamjan. Non degenerate unitary couplings of semiunitary
operators, Funct. Anal. Appl., 7 (1973), 255-267.

[2] V.M. Adamjan and D.Z. Arov. On unitary couplings of semi-unitary
operators, Amer. Math. Soc. Transl. 95(2) (1970), 17-129.

3]. A general solution of a problem in linear prediction of
stationary processes, Theory of Prob. and its Appl. 13(3) (1968), 394-
407.

V
[4] V.M. Adamjan, D.Z. Arov, and M.G. Krein. Infinite Hankel block

matrices and related extension problems. Amer. Math. Soc. Transl. 3(2)
(1978), 133-56.

[5] . Infinite Hankel matrices and generalized Carathdodory-Fejer
and Riesz problems, Funktsional'nyl Analiz i Ego Prilozheniya 2(1) (1968),
1-18.

[6] . Infinite Hankel matrices and generalized Carathdodory-Fejer
and I. Schur problems, Funkt. Anal. i Ego Prilozhen. 7(4) (1973), 1-16.

17] . Analytic properties of Schmidt pairs for a Hankel operator

and the generalized Schur-Takagi problem, Mat. Sb. 86 (128) (1971),
34-75; Math. U.S.S.R. Sb. (1971), 31-73.

[8] J.A. Ball. Invariant subspace representations, unitary interpolants and
factorization indices. Operator Theory: Adv. and Appl. 12 (1984), 11-38.

[91 P.B. Bloomfield. '""P. Jewell, and E. Hayashi. Characterizations of
.-- letely nond -ninistic stochastic processes, Pacific J. of Math. 107

(1983), 307-17.

[10] J.R. Butz. s-Numbers of Hankel matrices. J. Functional Analysis 15
(1974), 297-305.

[ [11] R.G. Douglas. Banach Algebra Techniques in Operator Theory. Academic
Press, New York, 1972.

[12] R.G. Douglas, H.S. Shapiro and A.L. Shields. Cyclic vectors and invariant
subspaces for the backward shift, Ann. Inst. Fourier (Grenoble) 20(1)
(1971), 37-76.

• [13] C. Foia§, and E. Frazho. A note on unitary dilation theory and state
spaces, Acta Sci. Math. 45 (1983), 165-75.

• [14] Y. Fourgs and I.E. Segal. Causality and analyticity, Trans. Am. Math.
Soc. 78 (1955), 385-407.

. * * * .

. . * .



83

[151 P.A. Fuhrmann. Linear Systems and Operators in Hilbert Space. McGraw-
Hill, New York, 1981.

¥
(16] I.C. Gohberg and M.G. Krein. Introduction to the Theory of Linear

Nonselfadjoint Operators. Transl. of Math. Monograph 18, Amer. Math.
Soc. , 1969.

[17] U. Grenander and Gabor Szeg6. Toeplitz Forms and Their A plications.
University of California Press, Berkeley, 1958.

[18] P.R. Halmos. A Hilbert Space Problem Book. Van Nostrand, New York,
1967.

*. [19] . Shifts on Hilbert spaces, J. Reine Angew Math. 208 (1961),
*102-12.

[20] P. Hartman. On completely continuous Hankel matrices, Proc. Amer.
- Math. Soc. 9 (1958), 362-66.

. [21] H. Helson. Lectures on Invariant Subspaces. Academic Press, New York,
°. 1964.

[22] H. Helson and D. Sarason. Past and future, Math. Scand. 21 (1967),
5-16.

[23] J.W. Helton. Discrete time systems, operator models and scattering theory,
J. Funct. Anal. 16(1) (1974), 15-38.

[24] K. Hoffman. Banach Spaces of Analytic Functions. Prentice-Hall,
Englewood Cliffs, 1962.

" [25] I.A. Ibragimov.. On the spectrum of stationary Gaussian sequences
satisfying the strong mixing condition: I. Necessary conditions. Theory
of Probability and its Applications 10(1) (1965), 85-106.

" [26] E.A. Jonckheere, and J.W. Helton. Power spectrum reduction by optimal
Hankel approximations of the phase of the outer spectral factor,
Proceedings of the American Control Conference, 3 (June, 1984), 1352-336.

[27] P.D. Lax and R.S. Phillips. Scattering Theory. Academic Press, New
York, 1967.

- [28] N. Levinson and H.P. McKean, Jr. Weighted trigonometrical approximations
on R1 with applications to the germ field of stationary Gaussian noise,
Acta. Math. , 112 (1964), 99-143.

[29] A. Lindquist and G. Picci. State space models for Gaussian stochastic
processes. In M. Hazewinkel and J.C. Willems (eds.), Stochastic Systems:
The Mathematics of Filtering and Identification and Applications. Reidel,
1981, 169-204.

" [30] B. Sz-Nagy and C. Foia§. Harmonic Analysis of Operators on Hilbert
Space. Amsterdam, North-Holland, 1970.

.. . . . . . . . .. **-. . . . . . . . . . . . . . . .



84

[31] Z. Nehari. On bounded bilinear forms, Annals of Mathematics 65(1)
(1957), 153-62.

[32] L.B. Page, Bounded and compact vectorial Hankel operators, Trans. Amer.
Math. Soc. 150 (1970), 529-39.

[33] V.V. Peller. Hankel operators of class 'P and their applications (rational
approximation, Gaussian processes, the problem of majorizing operators),
Math. U.S.S.R. Sbornik 41(4) (1982), 443-79.

[34] S.C. Power. Hankel operators on Hilbert space. Bull. London Math. Soc.
12 (1980), 422-42.

[35] . Hankel Operators on Hilbert Space. Pitman Advanced
Publishing Program, Boston, 1982.

[161 Y.A. Rozanov. Stationiry Random Processes. Holden-Day, San Francisco,
1963.

[37] G. Ruckebusch. Thdorie g6ometrique de la repr6sentation Markovienne,
Ann. Inst. Henri Poincard, 16(3) (1980), 225-97.

[38] . On the structure of minimal Markovian representations, In
Nonlinear Stochastic Problems, R. Bucy and J.M.F. Moura (eds.), Reidel,
1983.

[39] W. Rudin. Real and Complex Analysis. 2nd ed. McGraw Hill, New York,
1974.

[40] D.E. Sarason. Function theory on the unit circle. Notes for Lectures
at a conference at Virginia Polytechnic and State University, Virginia
(1978).

[41] . Generalized interpolation in Hco, Trans. Amer. Math. Soc.
127 (1967), 179-203.

[42] J.C. Willems. System theoretic models for the analysis of physical
systems. Riderche di Automatica 10(2) (1979), 71-106.

[43] A.M. Yaglom. Stationary Gaussian processes satisfying the strong mixing
condition and best predictable functionals, Proc. Int. Research Seminar
of Statistical Lab., Univ. of Calif., Berkeley, 1963, 241-52; Springer-
Verlag, 1965.

• .- , - ...- o -o %°, . . . . . . . . . ..o. ,- .- . . . . . ..•. .... . .



- - .A~- -77 -77. a- - - - - - - - --

Pd FILMED

1-85

DTlC
-.- - - - - - - -- - - - - - - - - - - - - - -- ~~ ' 7-.- .- !>:... . 7. . . . . .


